ECOLOGICAL RISK ASSESSMENT FOR THE EFFECTS OF FISHING: METHODOLOGY

WCPFC-SC2-2006/EB WP-14

Paper prepared by

CSIRO Marine Research
Castray Esplanade, Hobart, Tasmania, Australia
Ecological Risk Assessment for the Effects of Fishing (ERAEF)

June 19, 2006

Contact:

Alistair Hobday or Tony Smith
CSIRO Marine Research
Castray Esplanade, Hobart, Tasmania
Australia
Alistair.Hobday@csiro.au
Tony.D.Smith@csiro.au
The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative “model-based” approach at Level 3 (Figure 1). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

![Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in italics.](image)

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological component are evaluated, corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under EPBC legislation. The five components are:

- Target species
- By-product and by-catch species
- Threatened, endangered and protected species (TEP species)
- Habitats
- Ecological communities

This conceptual model (Figure 2) progresses from fishery characteristics of the fishery or sub-fishery, → fishing activities associated with fishing and external activities, which may impact the five ecological components (target, byproduct and bycatch species, TEP species, habitats, and communities); → effects of fishing and external activities which are the direct impacts of fishing and external activities; → natural processes and resources that are affected by the impacts of fishing and external activities; → sub-components which are affected by impacts to natural processes and resources; → components, which are affected by impacts to the sub-components. Impacts to the sub-components and components in turn affect achievement of management objectives.

Figure 2. Generic conceptual model used in ERAEF.

The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on
- Estimated risk at the previous level
- Availability of data to proceed to the next level
• Management response (e.g. if the risk is high but immediate changes to
management regulations or fishing practices will reduce the risk, then analysis
at the next level may be unnecessary).

ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders
involved in the activities being assessed. Stakeholders can make an important
contribution by providing expert judgment, fishery-specific and ecological
knowledge, and process and outcome ownership. The ERAEF method also relies on
stakeholder involvement at each stage in the process, as outlined below. Stakeholder
interactions are recorded.

Scoping

In the first instance, scoping is based on review of existing documents and
information, with much of it collected and completed to a draft stage prior to full
stakeholder involvement. This provides all the stakeholders with information on the
relevant background issues. Three key outputs are required from the scoping, each
requiring stakeholder input.

1. **Identification of units of analysis** (species, habitats and communities)
 potentially impacted by fishery activities (section S1.1).

2. **Selection of objectives** (section S1.2) is a challenging part of the assessment,
 because these are often poorly defined, particularly with regard to the habitat
 and communities components. Stakeholder involvement is necessary to agree
 on the set of objectives that the risks will be evaluated against. A set of
 preliminary objectives relevant to the sub-components is selected by the
 drafting authors, and then presented to the stakeholders for modification. An
 agreed set of objectives is then used in the Level 1 SICA analysis. The
 agreement of the fishery management advisory body (e.g. the MAC, which
 contains representatives from industry, management, science, policy and
 conservation) is considered to represent agreement by the stakeholders at
 large.

3. **Selection of activities** (hazards) (section S1.3) that occur in the sub-fishery is
 made using a checklist of potential activities provided. The checklist was
developed following extensive review, and allows repeatability between
fisheries. Additional activities raised by the stakeholders can be included in
this checklist (and would feed back into the original checklist). The
background information and consultation with the stakeholders is used to
finalize the set of activities. Many activities will be self-evident (e.g. fishing,
which obviously occurs), but for others, expert or anecdotal evidence may be
required.

Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the
stakeholder-agreed set of activities. Evaluation of the temporal and spatial scale,
intensity, sub-component, unit of analysis, and credible scenario (consequence for a
sub-component) can be undertaken in a workshop situation, or prepared ahead by the
draft case study author and debated at the stakeholder meeting. Because of the number
of activities (up to 24) in each of five components (resulting in up to 120 SICA
elements), preparation before involving the full set of stakeholders may allow time
and attention to be focused on the uncertain or controversial or high risk elements. The rationale for each SICA element must be documented and this may represent a challenge in the workshop situation. Documenting the rationale ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a “plausible worst case” approach (see ERAEF Methods Document for details). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

Level 2. PSA (Productivity Susceptibility Analysis)

The semi-quantitative nature of this analysis tier should reduce but not eliminate the need for stakeholder involvement. In particular, transparency about the assessment will lead to greater confidence in the results. The components that were identified to be at moderate or greater risk (SICA score > 2) at Level 1 are examined at Level 2. The units of analysis at Level 2 are the agreed set of species, habitat types or communities in each component identified during the scoping stage. A comprehensive set of attributes that are proxies for productivity and susceptibility have been identified during the ERAEF project. Where information is missing, the default assumption is that risk will be set high. Details of the PSA method are described in the accompanying ERAEF Methods Document. Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. The attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without full stakeholder involvement. This is a consultation of the published scientific literature. Further stakeholder input is required when the preliminary gathering of attribute values is completed. In particular, where information is missing, expert opinion can be used to derive the most reasonable conservative estimate. For example, if the species attribute values for annual fecundity have been categorized as low, medium and high on the set [<5, 5-500, >500], estimates for species with no data can still be made. Estimated fecundity of a species such as a broadcast-spawning fish with unknown fecundity, is still likely greater than the cutoff for the high fecundity categorization (>500). Susceptibility attribute estimates, such as “fraction alive when landed”, can also be made based on input from experts such as scientific observers. The final PSA is completed by scientists because access to computing resources, databases, and programming skills is required. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final results are then presented to the stakeholder group before decisions regarding Level 3 are made. The stakeholder group may also decide on priorities for analysis at Level 3.

Level 3

This stage of the risk assessment is fully-quantitative and relies on in-depth scientific studies on the units identified as at moderate or greater risk in the Level 2 PSA. It will be both time and data-intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.
Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process will result in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including to address the requirements of the EPBC Act as evaluated by Department of the Environment and Heritage.

Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be reevaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Each fishery case study will be revised at least every four years or as required by Strategic Assessment. However, to ensure that actions in the intervening period do not unduly increase ecological risk, each year certain criteria will be considered. At the end of each year, the following trigger questions should be considered by the MAC for each sub-fishery.

- Has there been a change in the spatial distribution of effort of more than 50% compared to the average distribution over the previous four years?
- Has there been a change in effort in the fishery of more than 50% compared to the four year average (e.g. number of boats in the fishery)?
- Has there been an expansion of a new gear type or configuration such that a new sub-fishery might be defined?

Responses to these questions should be tabled at the relevant fishery MAC each year and appear on the MAC calendar and work program. If the answer to any of these trigger questions is yes, then the sub-fishery should be reevaluated.